Home Page Contact Racism Hunger
Site Map About Us Renewable Energy Religion
Corona Virus Climate Change Endangered Species War

Renewable Energy

Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.

The five renewable sources used most often are:

  • Biomass —

    We have used biomass energy, or "bioenergy"—the energy from plants and plant-derived materials ,since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are methane, a natural gas) can be used as a biomass energy source.

    Benefits of Using Biomass
    Biomass can be used for fuels, power production, and products that would otherwise be made from fossil fuels. In such scenarios, biomass can provide an array of benefits. For example:

    •The use of biomass energy has the potential to greatly reduce greenhouse gas emissions. Burning biomass releases about the same amount of carbon dioxide as burning fossil fuels. However, fossil fuels release carbon dioxide captured by photosynthesis millions of years ago—an essentially "new" greenhouse gas. Biomass, on the other hand, releases carbon dioxide that is largely balanced by the carbon dioxide captured in its own growth (depending how much energy was used to grow, harvest, and process the fuel).

    •The use of biomass can reduce dependence on  oil because biofuels are the only renewable liquid transportation fuels available.

    • The main biomass feedstocks for power are paper mill residue, lumber mill scrap, and municipal waste. For biomass fuels, the most common feedstocks used today are corn grain (for ethanol) and soybeans (for biodiesel). In the near future—and with NREL-developed technology—agricultural residues such as corn stover (the stalks, leaves, and husks of the plant) and wheat straw will also be used. Long-term plans include growing and using dedicated energy crops, such as fast-growing trees and grasses, and algae. These feedstocks can grow sustainably on land that will not support intensive food crops.

  • Water (hydropower)

    Hydropower is one of the oldest sources of energy. It was used thousands of years ago to turn a paddle wheel for purposes such as grinding grain.Because the source of hydroelectric power is water, hydroelectric power plants must be located on a water source. Therefore, it wasn't until the technology to transmit electricity over long distances was developed that hydropower became widely used.


GEOTHERMAL POWER PLANT

  • Geothermal

    Many technologies have been developed to take advantage of geothermal energy—the heat from the earth. This heat can be drawn from several sources: hot water or steam reservoirs deep in the earth that are accessed by drilling; geothermal reservoirs located near the earth's surface, mostly located in western states, Alaska, and Hawaii; and the shallow ground near the Earth's surface that maintains a relatively constant temperature of 50°-60° F.

    This variety of geothermal resources allows them to be used on both large and small scales. A utility can use the hot water and steam from reservoirs to drive generators and produce electricity for its customers. Other applications apply the heat produced from geothermal directly to various uses in buildings, roads, agriculture, and industrial plants. Still others use the heat directly from the ground to provide heating and cooling in homes and other buildings.

    Other geothermal resources exist miles beneath the earth's surface in the hot rock and magma there. In the future, these resources may also be useful as sources of heat and energy.

  • Wind

    We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent—a wind turbine—can use the wind's energy to generate electricity.

    How It Works
    Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor.

    A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is actually much stronger than the wind's force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller, and the turning shaft spins a generator to make electricity


  • Solar

    Solar is the Latin word for sun—a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the sun falls on the earth in one hour than is used by everyone in the world in one year. A variety of technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for homes and businesses are solar water heating, passive solar design for space heating and cooling, and solar photovoltaics for electricity.

    Businesses and industry also use these technologies to diversify their energy sources, improve efficiency, and save money. Solar photovoltaic and concentrating solar power technologies are also being used by developers and utilities to produce electricity on a massive scale to power cities and small towns.

 

 

credit: NOAA, U.S. DOE, American Wind Energy Association, Bureau of Land Management, Sandia National Labooratory, The British Wind Energy Association, The World Wind Energy Association (WWEA), The University of Illinois